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Abstract
The U.S. Geological Survey; in cooperation with other go v-
ernmentand private organizations, is producing a conter-
minous U.S. land-cover map using Landsat Thematic Mapper
30-meter data for the Federal regions designated by the U.S.
Environmental Protection Agency. Accuracy assessment is to
be conducted for each Federal region to estimate overall and
class-specific accuracies. In Region 2, consisting of NelV York
and Nelv Jersey, the accuracy assessment "'as completed for
15 land-cover and land-use classes, using interpreted 1 :40,000-
scale aerial photographs as reference data. The methodology
used for Region 2 features a two-stage, geographically stratified
approach, with a general sample of all classes (1,033 sample
sites), and a separate sample for rare classes (294 sample sites).
A confidence index was recorded for each land-cover
interpretation on the 1 :40,OOO-scale aerial photography. The
estimated overall accuracy for Region 2 was 63 percent
(standard error 1.4 percent) using all sample sites.. and 75.2
percent (standard error 1.5 percent) using only reference sites
with a high-confidence index. User's and producer's accuracies
for the general sample and user's accuracy for the sample of
rare classes, as lvell as variance for the estimated accuracy
parameters, were also reported. Narrolvly defined land-use
classes and heterogeneous conditions of land cover are the
major causes ofmisclassification errors. Recommendations
for modifying the accuracy assessment methodology for use in
thf! othf!r ninf! Federal region." are provided.

Introduction
A conterminous U.S. land-cover map is being developed at the
U.S. Geological Survey (USGS) EROS Data Center using Landsat
Thematic Mapper (TM) 30-meter-resolutionimagery as the
baseline data. This regional land-cover mapping project is
jointly conducted by USGS and the U.S. Environmental Protec-
tionAgency(EPA), with the central objective to provide a gener-
alized and regionaUy consistent land-cover product for use in a

broad range of applications. Each of the ten EPA Federal regions
is mapped .independently. An EPA Federal region consists of
two or more States, and the ten regions make up thecontermi-
nous United States. Aspects of the mapping effort, ranging from
teams of analysts to classification techniques, are consistent
within each region but can vary among the regions.

At the core of this mapping project is a 23-category land-
cover map (Table 1) produced using 1991-93 TM data for two
dates: vegetation leaf-on and leaf-off. The two dates selected are
usually within 1 year of each other. After radiometric and geo-
metric corrections were applied, scenes for each I!egion were
spectrally stitched to form an image mosaic for further pro-
cessingand analysis. The classification system and mapping
techniques have been described in detail in Vogelmann et a!.
(1998).

Accuracy assessment is an integraf component of any map-
ping project based on remote sensing. As the USGS land-cover map
for each Federal region is completed, thematic accuracy is
assessed to measure general and categorical qualities of the data.
Assessing accuracy for the USGS regional mapping project isa
complex task,largely owing to the size of the study areas relative
to the 30-meter spatial resolution of the TM data used. Virtually
no suitable reference data frOm existing survey programs can be
used consistently for all Federal regions. Collecting new refer-
ence data is extremely labor intensive and time consuming, soa
carefully chosen sampling design is necessary in order to use
available resources efficiently.Peveloping a practical and statis-
tically sound sampling plan that can characteri~e the accuracy of
common and rare classes of the map product in such a large area
is the key to an effective accuracy assessment.

Region 2, the smallest EPA federal region in area (over 181
million30-meter pixels), consists of only the States of New
York and New Jersey. Of the 23 land-cover classes, 15 were
found in the region (Table 1). Region 2 was among the first
regions mapped and, consequently, served as the prototype
area for developing methodology for the accuracy assessment.
The Region 2 A~c;llrAc;y ARReRRment WAR rlHRigned to RAtisfy thH
following objectives:

.Develop a practical methodology to collect reference data based
on a probability sampling design and a well-defined response
design protocol.
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TABLE 1 SAMPLE SITES FOR THE GENERAL AND RARE-CLASS DESIGNS LISTED BY L\ND-CDVER CLASSES. OF THE 23 USGS REGIONAL L\ND-COVER CLASSES

(VOGELMANN £T At., 1998).. 15 ARE FOUND IN REGION 2 AND ARE NUMBERED FROM 1 TO 15 FOR THE PURPOSE OF THIS PAPER.

Class
Number

General
Sample

Percent of the
General Sample

PCfcent of
Map Pixels

Rare

Sampll
Map Class Name

7.84
5.13
1.94
0:87

10.45
12.88

0.77
5.91

14.52
35.82
2.52
1.06
0.10
0.10
0.10

13.67
4.21
1.23
L08
9.20

12.24
0.75
5.46

16.41
3188
2.91
0.72
0.13
0.05
0.07

43
47

42

Open water
Low intensity residential
High intensity residential
High intensity commercial built-up
Hay/pasture
Row crop
Urban grass
Needleleaf evergreen forest
Mixed forest
Broadlea[deciduous forest
Woody wetland
Emergent herbaceous wetland
Quarry/strip mine/gravel pit
Bare rock/sand/clay
Transitional barren

47
41
35
39

100 100Total:

Classes not in Region 2:
Small grain crop
Bare soil
Deciduous shrubland
Evergreen shrubland
Mixed shrubland
Planted/cultivated woody plantation
Grassland
Perennial ice/snow

.Describe site-specific thematic accuracy for all of Region Zas
the target population,

.Estimate overall accuracy as well as category-specific accuracy
(i,e... user's and producer's accuracies (Congalton, 1991)), and

.Document details of the protocol for future reference, and note
areas needing improvement.

Inthis paper we will describe methods and results of the
accuracy study for EPA Region 2. We will also discuss lessons
learned and their implications for planning subsequent accu-
racy assessments for the rest of the Federal regions.

Methods
A typical land-cover accuracy assessment contains three dis-
tinctive and integral phases: response design, sampling
design. and analysis and estimation (Stehman and Czaplewski,
1998). This breakdown provides a convenient way to consider
assessment features separately in the three parallel phases. The
response design refers to how reference data are collected.
whereas the sampling design deals with choosing a sample
plan that is appropriate for project goals. Analysis and estima-
tion are concerned with calculating accuracy estimates, a)ong
with the standard errors of those estimates. For this project. the
response design includes the protocol for collecting informa-
tion to determine the true land Cover at a sample location, as
well as for assigning the referenceJand-cover label The sam-
pling design component focuses on which elements of the tar-
get population are actually selected and the reference
clllssi fications thllt lire IIssignerl.

Response Desig;n

Reference Data
When the study area is large and collecting field data is imprac.
tical,the choice of reference data is often limited to existing
ancillary data sets. In this study, we reviewed several existing
national programs to determine ifanyofthem could be used as
the source of reference data. These programs included the

National Resource Inventory (NRI) of the u.s. Departmenlof
Agriculture (USDA) Natural Resource Conservation Service, the
Forest Inventory and Analysis (FIA) of the USDA Forest Service.
the U.S. Department of Commerce National Agricultural Stati$-
tics Service, the U.S. Department of the Interior GAP Program,
and the National Aerial Photography Program (NAPP). The U$e-
fulnessofthe$e data sets, except for NAPP, i$limited in two
aspp,c;ts: inc;omplete c;overllgA of the target population and dif-
ferent land-cover classification $Y$tems. For example. NRI data
do not cover Federalland$. and FIA data are limited tofore$t
1and only. The difference$ in land-cover clas$ification systems
also hinder a direct compari$on using these data sets.

A$ a national program, NAPP i$ flown systematicall yat
approximately 5-year intervals over the entire country. Either
black-and-white or color-infrared aerial photographs are
recorded at the scale of 1 :40,000. Becau$e NAPP cover$ the
whole country, it provides an adequate source of reference data
from which to de$ign a $uitable $ampling plan. The NAPPpho-
tographs taken in the early 1990s generally coincide with the
date of the TMdata u$ed for the cla$$ifications. Using NAPP
aerial photographs may result in interpretation error in the ref-
erence data. But the effect of interpretation error can be miti-
gated by developing con$i$tent, well-documented re$pon$e
de$ign protocol$.

NAPpproduct$ for large-area land-cover accuracy a$se$$-
ment include scanned and terrain-rectified photograph$ in digi-
tal form (digital ortho quadrangle$, or DOQ) and hardcopy NAPP
photographs in either print or transparency form. In Ihi$ $tudy,
NAPP photographic prints were preferred becau$e they are easy
to use and have sufficient resolution for photointerpretation.
Producing transparencies requires exLr!l sLeps !lnd has no pho-
to interpretation advantage over print$ for our objective$. Com-
plete coverage in DOQ is not available, making it inappropriate
for a regional accuracy a$$e$$ment, and the lack ofTM-DOQ cor-
egistration ha$ the potential to compound errors.

Additionally, stereo viewing can be u$ed in interpretation,
and it can be particularly usefu.l for certain cla$$es. However,
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our Region 2 experience showed that. at the cost of the extra
effort for stereo viewing. it. did not offer a substantial advantage
over single photographs.

could be, and indeed were, interpreted on the basis of tonaldif-
ferences from the TMimagery, were the result of the NAPP date
being different from the TM date and should be differentiated
from true misclassification error.

To minimize human errors in the photo interpretation pro-
cess, at least two analysts examined the same set of sample
sites. Disagreements between analysts were resolved by a third
analyst revisiting the sample sites in question. In Region 2,
approximately 30 percent of the sample sites were revisited by
all three analysts to resolve interpretation differences.

Unit afAssessment
Thematic accuracy can be evaluated using a variety of spatial
units, including pixel blocks (e.g., 3 by 3 pixels}, individual
pixels, and polygons (Stehman and Czaplewski, 1998}.ln this
study, pixels were used as the unit of assessment-the same as
the basic mapping unit in the final USGS map products (unfil-
tered andunsmoothed). Without accounting for any spatial
effects (e.g., salt-and-pepper, misregistrationeffects), results of
this accuracy assessment reflect bothmisclassification and
potential, albeit unmeasured, geometric aggregation factors.

Sampling Design
Given the choiceofNAPP aerial photographs as the source of ref-
erence data. several probability sampling designs Were consid-
ered and evaluated using the following criteria:

.Known inclusion probabilities, ensuring the objectivity of sam-
ple selection and the validity of statistical infel1ences;

.Small variance for estimated accuracy parameters:

.Good spatial distribution of the sample to ensure adequate preci-
sion for subregion estjmates as well as precision of estimates
for the full region;

.Representation of all classes, including rare classes:

.Low cost {both budgetary and time}: and

.Simple to implement and analyze.

The key design element for controlling cost was to use
NAPP photographs as primary sampling units (PSU) in a two-
stage sampling design. This limited the number of photographs
that had to be purchased. reduced the costs of photointerpreta-
tion. and lowered the potential cost of ground visits for con-
firming photointerpretation quality. Simple random or
systematic sampling of pixels without this first-stage clustering
structure would result in pixels dispersed among a much
larger number of photographs. Similarly, a stratified random
sample of pixels (strata identified by land-cover class) would
also not have permitted control over the number ofNAPP photo-
graphs sampled.

The second stage of the sampling design selected pixels as
secondary sampling units (SSU) from the first-stage sample
PSUs. The sampling design was then separated intb two parts: a
general. extensive design representing the full region and a
special. separate design focusing on rare classes (Table 1). The
general design was constructed so that all pixels. regardless of
class. had an equal probability of being sampled. The special
design for rare classes.. on the other hand. was developed on the
basis of stratification by rare land-cover classes to increase the
sample size in these classes. The rare-class design focused on
the objective of estimating the user's accuracy of the rare
classes.

Photointerpretation Protocol .
Sample points (pixels) were located by overlaying their coordi-
nates on the TMspectral image on the screen. Sample coordi-
nates generated from the sampling design (discussed in the next
section) were "copy-and-pasted" to the image cursor1ocation
and visually transferred to NAPP photographic prints. Dis-
playing TM spectral bands inred-green-blue combination for
the purpose of locating sample points provided two advan-
tages. First. viewing the spectral image rather than the classi-
fied map maintained the objectivity of the photointerpretation
process. Second. finding the corresponding locations on the
non-georeferenced NAPP prints was eased by visually con-
sulting with spatial patterns (but not map classes) apparent on
theTM color composite image.

Once sample coordinates were transferred from the TM
image on the screen to the NAPP prints. the sample sites were
interpreted directly on the photographs. Reference land-cover
labels and attributes were visually interpreted and recorded
onto a spreadsheet file. For each record.1he follo\ving fields of
information were obtained:

.Primary and secondary land cover of the sample site

.Dominant land cover of adjacent pixels

.Relative location of the sample site
(1) On the edge of two land-cover classes
(2) Homogeneous (one land-cover class)
(3) Heterogeneous (more than two land-cover classes)

.Confidence of photointerpretation
(1) Land-cover and land-use iniormation is too difficult to

interpret
(2) Interpretation is perhaps a correct label but there is ~ome

doubt
(3) Interpretation is probably a correct label
(4) Interpretation is absolutely a correct label

.Notes on other factors affecting the photo interpretation (e.g..
temporal effects). Sampling Frame

The sampling frame for the assessment consisted of the NAPP
coverage for all of Federal Region 2. A gap inNAPP coverage
(northwest part of the State of New York) resulted in the actual
population assessed being smaller than the full region.
Approximately 3 percent of the target region was not covered
by NAPP photographs; and thus, the accuracy estimates apply
to the remaining 97 percent of the region.

Photo interpretation does not always result in precise,
unambiguous land-cover labels. Closely related land-cover
types. such as conifer and mixed forests, are usually the cause
of uncertainties in ciflfininga correct classification. In such sit-
uations, both primary and secondary land-cover descriptions
were recorded, and either of the two would be considered
correct.

The primary moti vation for recording confidence and rela-
tive location information during interpretation was to provide
opportunities to address issues related to misclassification or
photo interpretation ala )ater stage of analysis. Relative loca-
tioQinforms us about mixed pixel problems. and the confi-
dence information is related to uncertainties of photointerpre-
tation. Additionally, possible 1and-cover changes resulting
from differences in TM and NAPP dates are captured in both the
confidence index and supplemental notes~Often in just 1 year,
crop types may be changed (e.g.. from row crops to hay and pas-
ture) or forest lands cleared. These temporal changes, which

First-Stage Sample
To select PSUs for the objective of a spatially well-distributed
sample, the entire sampling frame was partitioned into 333
grid cells on the basis of NAPP flight-line and frame 11 umbers ,
with each grid cell measuring 15' by 15' and consisting of32
NAPP photographs (four flight lines, eight photographs per line,
Figure 1). Next, a stratified random sample was se~ected using
the 333 grid cells as geographic strata (equal area for all strata).
One photograph was selected at random from each grid cell,
with all photographs having an equal probability of being
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selected. It is important to note that the PSU is actually a
"cropped" NAPpphoto. not the full photo. Equal area regions
(i.e.. the interior of a NAPP photo) constitute the PSUs. and these
first-stage sampling units are non-overlapping.

Grid cells on the boundary of Region 2 were treated as if
they were complete strata (i.e.. the grid cell or stratum contains
32 NAPP photographs). If the center of a selected NAPP photo-
graph fell outside the regional boundary. it was not usedinihe
sample. This restriction maintained the equal-probability char-
acteristic of the first-stage design. If the boundary strata were
not treated as each containing 32 cells. selecting one photo-
graph from each cell would result in higher probabilities of
sampling photographs along the region boundary. Such
unequal probabilities are still allowable under a probability
sampling protocol. but they create some extra complexity that
was avoided in our analysis. The first-stage sample consisted
of 278 NAPP photographs (Figure 1).

Sample for Rare Classes
Seven land-cover classes were treated as rare classes. defined
as classes each comprising less than 2 percent of the total map
area and pruduGingonly a few SSUs from the general sample
because of the equal-probability feature of this design (Table 1).
An additional. separate design for rare classes was imple-
mented for this study to augment the first. general design. The
desire to exercise some control over the spatial distribution of
th~ SSUs GPntinued to be a k~y criteriQn influ~nGing the rar(!-
class treatmenLConsequently, the NAPP photographs seJected
for the first-stage sample were used as the starting pdint for the
rare class design. For each rare class, simple random sampling
was used to selectssus from all rare-class pixels found within
the first-stage NAPP photographs. Within each rare-class stra-
tum, pixels had equal inclusion probabilities, but these inclu-
sion probabilities differed from those resulting from the general
sampling design.

The sampling design described above produced the spatial
distribution ofsnmplcd NAPP photogrnphsshown in Figure 1
from which the second-stage samples of the general /ind rare-
class designs were selected (Table 1). The first sampJe encom-
passes all mapped land cover-classes, whereas the second sam-
ple contains only additional SSUs for the rare mapped classes.
These two samples can eilher be combined or treated separately
for accuracy estimation.

Second-Stage Sample
Second-stage sampling was accomplished by selecting four
SSUs (pixels) within each psu to provide the actual sample
locations for obtaining the reference land-cover classification.
Each photograph (psu) was divided into equal-area quadrants,
and one pixel was selected at random with equal probability
from within each quadrant. Dividingthe photograph into quad-
rants spatially distributed the sample pixels across the sampled
photograph. If the psu was a boundary photograph and the
selected pixel was outside the target region, no sample pixel
was obtained for that quadrant of the photograph. This design
protocol extends the equal probability feature of the general
design. A total of 1,033SSUs were selected from the 278 NAPP
photographs (Table 1).

Analysis and Estimation
The accuracy assessment results are derived from analysis of
the error matrix summarization of the reference data (see Table
2 for !Jrror matrix notation). The equal-probability feature of the
general sampling design permits using theconventiona.l si~-
pIe random sampling (SRS) formulas for overall accuracy (P),
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TABLE 2. SAMPLE ERROR MATRIX NOTATION.

fl.: N.nkq

n.

nql nq'
n+l n+:

nqq
n+q

Nq,
N

n'l'
n

q
Column Total

nii= number of pixels in map category i. reference category j
nt. = number of pixels mapped as land-cover class k in the population
n.t = number of pixels in land-cover class k in the sample according
to the reference label
n = number of pixels in sample
N = number of pixels in population

user's a~curacy for class j (PuJ, and producer's accuracy for
class j (P Ai). More efficient estimates of overall accuracy and
producer's accuracy are available by using poststratification
(Card, 1982). Poststratified estimators use the known pixel
totals for each land-cover class (Ni+), treating the sample as a
stratified random sample of ni+ pixels from the Ni+ pixels in
that class. Poststratification is justified by a conditional proba-
bility argument, in which the estimates ate conditioned on the
observed sample size in each stratum (Sarndal etal., 1992, Sec-
tion 7.10.2). Poststratification does not change the estimate of
user's accuracy. FoI this study the overall accuracy (p) and pro-
ducer's accuracy (PAi) are estil"!lated usingpoststratified formu-
las, whereas user's accuracy (PuJ is based on the SRS formula:
i.e.,

excluded pixels from all "common" classes, producer'saccu-
racy and overall accuracy are not estimated from the rare-class
sample.

The variance estimation formulas represent approxima-
Lion!! to the exact variance because the formulas assume that
the general design is simple random sampling, and the rare-
class design is stratified random sampling. Two design features
are not accounted for by this assumption, the geographic strati-
fication of the first-stage sampleofNAPp photographs, and the
clustering feature of the second-stage sample pixels. Not
accounting for the geographic stratification tends to result in
overestimating variance, whereas ignoring clustering structure
generally results in underestimating variance. Neitherpoten-
tial source of bias in the variance estimators is likely to be large.
The precision gained by geographic stratification is usually
small, so a variance estimator not accounting for this slight
decrease in variance will not be badly biased. Because only
four pixels are sampled per cluster (NAPP photogr~ph) in the
general design, the effect of a high within-cluster correlation,
which inflateslhe variance of cluster sampling, will also be
small. Therefore, ignoring the variance inflation due to cluster
sampling is not likely to result in a large underestimation of
variance. The compensating effect of the two sources of bias
(over and underestimation) further diminishes any bias con-
cerns.. We emphasize that no assumptions are needed to esti-
mate the accuracy parameters themselves, and the SRS
assumptions for the design apply only to variance estimation.
The variance approximations used present considerablesim-
plification of the formulas required to represent the full com-
plexity of the two-stage sampling design.

Accuracy estimates are also obtained using only the high
confidence sites (confidence index 3 or 4 in the response
design). For Region 2, high confidence sites represent 82 per-
cent of all sample sites. Recall that the probability sampling
protocol permits no exclusions from the sample frame, so the
reference sample may include pixels containing mixtures of
land-cover classes as well as pixels intermediate between land-
cover classes. The high confidence sites represent ~ statistical
subpopulation of the full target population, so subpopulation
estimation procedures are employed. The equal-probability fea-
ture of the sampling design makes the subpopulation analysis
relatively simple. Suppose there are N' high confidence pixels
in the Region 2 population. Given that n' high confidence sites
appear in the sample, each high confidence pixel has a proba-
bility of n' IN' of being included in the sample. Although N' is
1m known, it turns otunot to be needed in the estirnlationformu-
las.An example will suffice to illustrate this. User's accuracy
fQr land-cover classifor the high confidence sites is defined as
PUi= Nil/ N', where Nil is the true number of high confidence
pixels correctly classified as land-cover class i(PUi is thepopu-
lation parameter). The standard approach to estimate Puiisl0
estimate both Niland N'; thus,

p (1)

var(P}

(2)

(3)

(4)

PUI

var(PuJ

F. (5)

!!i!:-
nk+,

var(PAP
P:

N~.IN'

II (7)

(6)
and

var(Pi,J Fui(l P Ui}/(n;

1)

(8)

Note that N' does not appear in the estimate PU;' nor does it
appeaiin th()()stimllted variance. Hy similar derivations, N' is
not required for the estimates or variance estimates for produc-
er's accuracy or overall accuracy when the estimation formulas
are those of simple random sampling (or, in thecas~ of the rare-
class design, simple random sampling within strata). That is,
theestimatiomormulas for the high confidence subpopulation
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For the rare-class design, the first-stage sample is the same
as that of the general-class design. Further, within a rare-class
stratum, pixels are sampled with equal probability from all pix.
els of that class identified in the first-stage sample ofPSUs. Con-
sequently, the standard formulas for user's accuracy given by
Equations 3 and 4 apply, with njj and nj+ being the sample val-
ues from the rare-class design. Because the rare-class design

























TABLE 3. SAMPLE ERROR MATRIX FOR THE GENERAL DESIGN USING ALL SAMPLE SITES. ESTIMATED USER'S ACCURACIES AND STANDARD ERRORS ARE PRESENTED

IN THE LAST Two COLUMNS. AND PRODUCER'S ACCURACIES AND STANDARD ERRORS ARE IN THE LAST Two Rows. (OVERALL ACCURACY IS 63 PERCENT,

WITH A STANDARD ERROR OF 1.4 PERCENT),

1:!+;
P"

SE(PA)

TABLE 4. ERROR MATRIX AND ESTIMATED USER'S ACCURACIES FOR RARE CLASSES FROM THE RARE-CLASS STRATIAED SAMPLE,

0
1
0
1
1
0
0

0
0

32
0
0
0
0

53.4
70.2
76.2
68.1
63.4
77.1
38.5

14
15

are the usual simple random sampling formulas with the appro-
priate subpopulation sample quantities substituted into the
equations.

Results and Discussion
The complete error matrix for the general design is presented in
Table 3 with estimated producer's arid user'saccurac.ies and
associated standard elTors. Using the poststratified formulas
(Equations 1 and 2), the estimated overall accuracy based on aU
sample sites is 63 percent, with a standard error ofiA percent.
Estimated user's accuracies lor the rare-class stratified sample
are given in Table 4. Because the rare-class sample does not
include common classes, producer's and overall accuracies are
not calculated. The accuracy estimates using only high confi-
dence sites are reported in Tables 5 and 6. The class-specific
accuracy estimates are also shown as Figure 2 for visualization
purposes.

Over the entire region, high confidence sites represent 82
percent of all sample sites, and the proportion of high confidence
sites is approximately the same for all classes. Using Equation 1
and limiting accuracy estimates to only high confidence sites, we
found that the poststratified overall estimate is 752 percent with
an approximate standard error of 1.5 percent.

including residential, urban, and barren. It is important to
understand what factors may have contributed to the low
results. These factors can be broadly grouped into two situa-
tions: those related to the timing of data acquisition (hay/pas-
ture, row crop, wetland, transitional barren), and those
involving land-use definitions.. such as high intensityresiden-
tial and urban built-up (classes 3 and4J, and the two barren
classes (classes 13 and 14).

During land-cpver mapping, Landsat TM data acquired at
)eaf-off season were primarily used for discriminatimg between
hay/pasture and row crops. This is done under an assumption
that there is a temporal window during which hay and pasture
areas green up before most other annual or perennial vegeta-
tion. Because of this, the success of discriminating between
hay/pasture and row crops using leaf-off data hinges on the sea-
sonRI.timingofTMoRtR Rr:lJllisition. However, ifleRf-off data
are not temporally ideal, (e.g., the greenness level of hay (pas-
ture areas is low), then confusion between hay/pasture and
other agricultural lands will resulL

Acquisition dates of the NAPP photographs used as refer-
ence data range from 1993 to 1997, whereas the satellite data
vary mostly from 1991 to 1993.. The changes that have taken
place across the landscape over this time can complicate inter-
pretation and comparison, even though effort was made to
account for the time change during the photointerpretation
and data analysis.. Although this is not viewed as a major prob-
lem for most classes, some land-cover changes may not be cap-
tured and accounted for during photointerpretation, such as
crop rotation between hay/pasture and row crops. Thus, the

Discussion of Individual Class Performances
Accuracy estimates vary greatly among the 15 individual
classes. When either user's or producer's accuracy is consid-
ered, results are low or moderately low for forested wetland,
transitional barren, hay/pasture and crops, and rare classes,
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TABLE 6. USER'S ACCURACIES FOR RARE-CLASS SAMPLE USING ONLY HIGH

CONADENCE SITES.

0.77
0.83
0.93
0.83
0.93
0.87
0.87

63.6
71.8
76.9
64.1
68.4
83.9
44.1

12
13
14
15

Landsat classification may have correctly classified a pixel as
hay/pasture, but the NAPP photograph flown a year later may
show that the land has been rotated to row crop. This type of
mismatch was handled in two ways. First. if the tonal differ-
ence between TM and NAPP could be unambiguously deter-
mined, then the land-cover label would be based on knowledge

of vegetation phenology. Otherwise, a rating of low confidence
would be given as a practical way to minimize such non-mis-
classification error differences. This effect can be seen from
improved class accuracies in Table 5 when the analysis is of the
high confidence subpopulation for these two land-cover types.

The accuracy of the forest wetland class (2.52 percent of
the mapped area) is low. This land-cover class was derived in
part from multiple data sources, including New York State Reg-
ulatory Wetlands data. New Jersey State land-cover data. and
the 1970s USGS land-use and land-cover data. These data sets
were developed at different time periods and for different pur-
poses. and they are not ideal for regional consistency. temporal
consistency, or level of detail. Additionally. depending on
dates of the image data and NAPP photographs. the presence and
optical propcrtics of ground water can affect whether the land
cover is classified as woody wetland or forest, as suggested by
confusions in Tables 3 and 5.

The class of transitional barren (0.10 percent of the map)
may also suffer the same deficiency related to timing and/or
the interpretation capabilities of the two primary data
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in our response design protocol provide some insight into the
potential errors of the reference classification and the impact of
these errors on the reported accuracy. Recording a secondary
land-cover class. if one existed. for1he reference sample pixel
allowed for employing a "softer" measure of agreement and
subsequent analysis akinto1he approach (using fuzzy classifi-
cation methods) suggested by Zhang and Foody (1998. p.
2726). The confidence index data allowed for analyses of error
by subsets of the data. For example. results from the' high confi-
dence (confidence of 3 or 4) subpopulation may be considered
as representative of the accuracy of "pure" pixels. Comparing
the accuracy estimates for the high confidence pixels to theesti-
mates for all sites provides an indication of the contribution to
classification error attributable to the sources of a low confi-
dencelndex(e.g.. homogeneous pixel but land-cover type is
not clearly interpretable as of the defined MRLC classes. mixed
pixel containing two or moreland-cover classes. changes in
land cover between the date of imagery and the date of the NAPP
photo. and photointerpreter disagreement). Joria and Jorgen-
son (1996. p. 167) employed a similar analysis in which they
assigned a qualitative confidence level from 1 to 3 (1 being
most confident) and reporting accuracy for the different confi-
dence levels. Zhang and Foody (1998. Table 1)conlIluctedan
analogous analysis by reporting overallaccuracyior the sub-
population of pure pixels which can be compared to accuracy
achieved for subpopulations including non-pure pixels. The
response design protocol and additional analyses imple-
mented in Region 2 address some of the issues affecting the
"conservative bias" of accuracy (Verbyla and Hammond, 1995)
resulting from an assessment in which the sample is not
restricted to homogeneous land-cover areas or pure pixels.

involved: TM and NAPP. The class is designed for conditions
such as temporary clearing and regeneration of forest cover.
Because of the inevitable date difference between TM and NAPP,
it is possible that what is considered transitional barren at the
TM date may already have enough vegetation to be called, say,
young conifer stand at the NAPP date (see Table 4).

Low accuracy for classes that are land use in nature is
understandable. Despite the extensive use of ancillary data,
such as population census, it is very difficult to unambiguously
separate high intensity residential from urban use, either dur-
ingthe modeling ofTM data or simply when viewing it on a
NAPP photograph. The same is true for the artificially desig-
nated barren classes between quarry/strip-mine class and
sandy/gravel class. If the 15 classes were aggregated to Ander-
son level 1 (Anderson et aI., 1976), the estimated overall accu-
racy using all sample sites would be improved from 63 percent
to 80 percent, an indication that a substantial amount of confu-
sion is due to similarly defined classes.

Summarizing the above analyses of performances of indi-
.vidual classes makes it clear that land-cover mapping accuracy
is strongly related to homogeneity of the land use. An examina-
tion of the spatial distribution of miscla$sification errors (Plate
1) shows that mostmisclassification errors in the land-cover
map occur at heterogeneous fringes of multiple land-cover and
land-use patterns. For example, the extensive forest cover on
the Adirondack Mountains in northeast New York is relatively
error free. Except for differences owing to timing between the
TM and NAPP data sources, which are arguably not misclassifi-
cation error, narrow definitions in land cover (e.g., mixed ver-
sus conifer forests) or land use (e.g., different types of barren
land) seem to be the primary causes of misclassifications.

Discussion of Sampling Design Issues
The two-stage, cluster sampling design employed for both the
general and rare-class designsjs consistent with the approach
taken by Belward eta/. (1996), Edwards eta/. (1998), and Lilles-
and (1994) for large-area accuracy assessments. Several advan-
tages derive from our chosen designs. The general design is
equal probability, but notsRS.It retains much of the ease of anal-
ysis of an SRS and exercisesst!ong control over the spatial dis-
persionof the sample. A similar characteristic holds for the
rare-class design. The rare-class design is stratified (but not
stratified random) at the first stage, leading to equal inclusion
probabilities within each stratum. The within-stratum design is
not SRS, however. This structure is particularly advantageous
for ground-visited reference data. Edwards et a/. (1998) noted
that randomly distributing the sample points within strata
would have severely compromised their attempt to maximize
logistical efficiency for sampling the large area represented by
the Utah GAP land-cover map. The two-stage clustering struc-
ture employed in their study, and selected for the Region 2
assessment, alleviates that obstacle.

Aronoff (1982), Rosenfield et al. (1982), Congalton(1991),
and Edwards etal. (1998) mention the possib.ility of combining
a stratified sampling design with an equal probability design.
The usual motivation for employing two designs is that the
equal probability design (typically a simple random or system-
aticsample)can be quickly and easily implemented, and it does
notrequire the land-cover map to be complete, thus allowing
the reference sample data to be collected at the same time as
the imagery is taken. However, an equal probability design such
as simple random or systematic sampling will result in small
sample sizes for the rare classes unless the overall sample size
is extremely large. The allocation of sample sizes to land-cover
classes resulting from our general sampling design (Table 1)
illustrates the inadequate coverage for precise estil!I1ation of
rare-class accuracies. The second design, stratified by mapped
land-coyer types, ensures representation of the rare cover
types.

Photointerpretation
NAPP aerial photographs provided the best available reference
material under the constraints of the USGS regional land-cover
mapping program. Interpretation of 1:40,OOO-scale aerial pho-
tographs is a feasible and practical way to collect reference
data for the regional accuracy assessment. Visually locating
sample sites on the photographs takes time, but the precision
is generally satisfactory. There are two drawbacks to using this
approach: (1) the often-unavoidable Lllne differences between
the TM and NAPP dates, as discussed above, and (2) the need for
field visits to ascertain land cover for low confidence sites.

About 18 percent of the sample sites are low confidence
sites. It is important to note that low confidence sites are notnec-
essarilyrelated to mixed land-coyer classes.. Rather, low confi-
dence is recorded often because the interpreter feels that the
land cover is simply too difficult to read on the NAPP photo-
graph. This may be due to an edge condition, such as between
water and land, or due to lack of information on land use (e.g.,
high intensity residential versus commercial use). The inter-
preter could use his own knowledge or other features available
on the photograph to infer the land cover, but doing so would
often lead to alow confidence rating. Interpretation of low con-
fidence sites maybe improved by field visits to these sites. In
{his study, field visits wore not conducted due to the limited
time available to the project staff.

The fact that accuracy increases sharply for the high confi-
dence sites tells us that limiting accuracy sampling to clearly
interpretable (homogeneous) pixels would have provided a
much more optimisLic view of accuracy. A conventional way
of making the map more homogeneous is by limiting sample
sites to only homogeneous pixel blocks (e.g., a window of 3 by
3 pixels). In the case of the USGS regiollalland-cover mapping,
no filtering is used to smooth the resulting land-cover maps, so
pixel blocks were not used for accuracy assessment.

Although it is "difficult to examine closely the source and
nature of errors in classifications using hard [classification]
methods" (Zhang and Foody, 1998, p. 2722), the data collected
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Our initial motivation for employing both designs, rather
than just one ue1;igu stratified by all land-cover classes, 'vvasthc
expected advantage of enhanced flexibility for analyses by
users of the accuracy data. That is, we anticipated that users
would subject the land-cover map to diverse applications, and
that various aspects of accuracy would be of interest to differ-
ent users depending on their application. For example, some
users might be interested in specific subregions of the map,
whereas others may be interested in aggregating certain land-
cover classes. The equal probability feature of the general
design facilitates ease of such analyses because the weighted
analysis required of a stratified sampling design would not be
necessary for the general design. The general design was expec-
ted to be less precise than a stratified design for estimating
user's accuracy of rareland-cover classes. But the poststratified

For Region 2, the data from just the rare-class design pro-
vided the information to estimate user's accuracy with reason.,
ably good precision for the rare classes. The advantage of
combining the general and rare-class samples accrues to esti-
mating producer's accuracy for rare classes. The theory for com-
bining probability samples exists (Hartley.. 1974; Sarndal et al.,
1992, p. 545). The estimation formulas require fairly elaborate
data management procedures ("bookkeeping"), and the vari-
ance estimators can be complex when the two sampling designs
include strata and two-stage sampling. Consequently, these
formulas and the resulting estimates are not presented in this
paper, with the implication on our analyses being that produc-
er's accuracies for some of the rare classes can be estimated with
better precision than that shown by the estimates presented for
just the data from the general sampling design.
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rare classes. The design protocol must also accommodate the
existence of several rare classes, and this could further compli-
cate a first-stage protocol designed to sample PSUs with multi-
ple rare classes with higher probability. In Region 2. clustering
of sample pixels into one or two PSUs did not occur, but this
potentiality motivates investigation of design structures to pre-
vent this problem from occurring. A practical problem to
implementing this change in the first-stage sampling protocol
is that the land-cover composition for each NAPP photo within
the entire region must be described. The cost of such a prelimi-
nary analysis may be prohibitive.

Conclusions
The USGS regional land-cover mapping program is conducted
over very large areas with a relatively large number of land-
cover and land-use classes. Some of the land-use classes (such
as the three barren classes, and residential and commercial
classes) are very similar spectrally, posing a challenge to both
the mapping and photo interpretation during accuracy assess-
ment. Given these conditions, the overall and class-specific
accuracy estimates for Region 2 are generally satisfactory. Most
misclassification errors occur along edges of heterogeneous
land-cover and land-use patterns, and a majority of the confu-
sion is between related land-cover or land-use classes.

Adherence of the Region 2 sampling design to probability
sampling protocol resulted in a statistically defensible accu-
racy assessment. and the estimates apply to a well-defined pop-
ulation, the 97 percent of the area of Region 2 for which NAPP
photography was available. The accuracy estimates are statisti-
cally consistent, as recommended by Stehman and Czaplewski
(1998). The two-stage cluster sampling feature of both the gen-
eral and rare-class designs results in an equal probability sam-
ple (for all classes for the general design, and within strata for
the rare-class design), facilitating ease of analysis. This design
also provided the advantage of a spatially well-distributed sam-
ple across Region 2, yet at the same time created logistical effi-
ciency by restricting the sample spatially to the area within the
first-stage sample NAPP photos. Combining the general and
rare-class designs to improve precision of producer's accuracy
for the rare classes creatAn a more complicated analysis proto-
col than we had envisioned. In retrospect, the advantages of
employing two separate designs were probably not sufficiently
strong to merit this approach over some simpler alternatives. In
particular, we propose retaining the two-stage cluster sam-
pling feature for subsequent assessment of other EPA Federal
regiuIIs, but we recommend using a single design stratified by
all land-cover classes, not just the rare classes. When combin-
ing data from different strata, the analysis of this single design
must incorporate the appropriate strata weights required for
consistent estimation of accuracy measures, but such stratified
sampling analyses should be routine in accuracy assessment
work. Employing a different sampling design from the Region
2 design in other EPA federal regions will not adversely affect an
eventual summary of accuracy at the conterminous U.S. level.
In the design for the entire U.S., the federal regions represAnt
strata and, as such, each may have its OWII separate design. A
complete summary for all ten federal regions will be reported
when the accuracy assessment results are complete.

NAPP photographs provided a practical and economic
means for assessing large-area land-cover accuracy in the
United States. Visually locating sample sites and interpreting
land cover proved effective and efficient. There are, however,
some wAaknesses in lhis practice, chiefly the associated uncer-
tainties of land-cover change owing to the difference in the TM
and NAPP acquisition dates, and the difficulty in land-use inter-
pretation. The confidence index used in Region 2 is one way to
evaluate these uncertainties. More effective but not overly com-
plicated measures may be needed to better address suchprob-
lems in future operational large-area accuracy assessment.

analysis of the general design should result in precision simi-
lar to a proportionally allocated stratified design for overall and
producer's accuracies, so the precision disadvantage of the
general design was expected to be small for these estimates.

In hindsight, these advantages of the general design are
probably not compelling relative to its disadvantages. and
our decision to employ the general design may reflect an over-
senitivity to the needs of potential secondary analyses based
on the MRLC accuracy data. A viable, practical alternative to
the two-design approach we used would be to base the entire
assessment on a single design stratified by all land-cover
types. This design would still retain the two-stage cluster
sampling protocol, and it would be equal probability within
strata, thus retaining some of the simplicity of analysis
gained by our general design. A single stratified design would
avoid the complexity of the dual-frame estimation methods
required for analyzing the combined general and rare-class
designs, and it would have allowed for a more balanced allo-
cation of sampling effort among the common and rare classes.
For example, the general design of Region 2 resulted in 370
sample sites for broad leaf deciduous forest. Consequently,
accuracy of this class was estimated very precisely. However.
a more efficient use of sampling resources may have been to
allocate some of the deciduous forest pixels to other classes
in order to improve the precision of the estimates for those
classes. Having a single design stratified by land-cover class
would have permitted achieving this more equitable alloca-
tion. Lastly, because the reference data were photointerpre-
ted, one of the other advantages of a two-design approach-
sampling for reference data simultaneous to the time of the
imagery -was not relevant.

Whether a stratified design is employed for all land-cover
classes or for just the rare classes, several features of the sam-
pling design merit further evaluation. The main issue is alloca-
tion of samples to PSUs. A potential disadvantage of the two-
stage cluster sample occurs if a land-cover class is spatially
clustered within in a small region, resulting in most of the sam-
ple pixels of this class being found in a few PSUs. In a worst-case
scenario, all the sample pixels could be in a single first-stage
PSU. Although the design is still a probability sampling design,
the precision of the estimates for this spatially clustered class
will likely be poor because of the strong clustering feature of the
design. To circumvent this feature of cluster sampling, we
would like the sample to be distributed among a larger number
of PSUs. Two options are proposed. The Region 2 design selected
the second-stage sample with equal probability from all pixels
of the rare class identified in the first stage sample. Conse-
quently. the second-stage pixels will be represented in the PSUs
in proportion to the number of pixels of that class in the PSU;
i.e., PSUs with many pixels of the class will have more of the
second-stage sample pixels. The second-stage design can be
changed so that. for example, a single pixel could be sampled
from each PSU. This would effectively spread the second-stage
sample for this land-cover class among a larger number of PSUs,
diminishing the precision disadvantage of clustering. How-
ever, the consequen~A i!; that the second-stage sample now has
a more complicated to analyze unequal probability sampling
scheme, and it is possible that this will also create higher vari-
ances for the estimates.

A related dimension of this clustering problem occurs
when a rare class only appears in one or two first-stage sample
PSUs. A design modification would therefore need to focus on
how to increase the representation of rare classcs in the first-
stage sample of PSUs. A typical trade-off is involved. PSUs hav-
ing rare-class pixels are identifiable from the land-cover map.
so it would be possible to sample such PSUs with higher proba-
bility. The added complexity of the unequal probability struc-
ture would again need to be dealt with, and it is not clear how
this change would affect precision of the estimates for the non-
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